HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种双壳层相变蓄热球及其制备方法与流程

2021-01-31 16:01:38|324|起点商标网

[0001]
本发明属于相变蓄热球技术领域。具体涉及提供一种双壳层相变蓄热球及其制备方法。


背景技术:

[0002]
相变储能技术是利用相变材料物态变化过程中吸收和释放热量的特性进行储能。当环境温度高于相变温度时,相变材料熔化或气化,吸收蓄热;反之当环境温度低于相变温度时,相变材料凝结或凝固释放热,从而达到调节环境温度和储能的作用。充分利用相变材料的潜热储能特性,可以达到建筑调温节能、余热回收及储存、辅助蓄热和太阳能热储存等多方面需求。
[0003]
铝基合金是一种优异的金属基相变储热材料,在高温储热领域具有广泛的应用前景。然而,合金储热应用的成功与否,一方面取决于储热材料本身的储热性能,另一个重要方面取决于储热合金与容器壳体材料的相容性,因为铝合金材料具有液态腐蚀性,在长期的吸放热循环过程中可能会与容器壳体之间发生化学、电化学及物理反应,从而造成壳体腐蚀而危及整个储热系统的安全运行。将相变材料制备成复合相变蓄热颗粒是解决上述问题的关键技术之一。复合相变蓄热颗粒由相变材料为核、包覆材料为壳构成。由于复合相变蓄热颗粒具有无腐蚀性、防介质泄漏、蓄热密度较大、相变时恒温等优点而成为近年来研究的热点。
[0004]
近年来,关于铝或铝硅合金的复合相变蓄热材料已经有大量的研究。如“一种具有相变蓄热功能的金属陶瓷及其制造”(201310293700.x)专利技术,该技术以铝硅合金粉或其改性粉和刚玉粉为原料,外加mgo为烧结助剂,经原料称量、干法混合、细磨、成型和烧成,制得一种金属陶瓷;“一种相变储热材料”(201811578090.7)专利技术,该技术以刚玉粉、石英砂粉和铝硅合金粉为主要原料,与酚醛树脂混合后压制成型,高温焙烧,制得一种相变储热材料。上述技术都将相变材料直接与基体材料混合,压制成型热处理后得到成品。但是,这种方法制备的相变蓄热材料中铝硅合金粉的含量受到限制,铝硅合金粉较高时,焙烧过程中铝或铝硅合金粉熔化后极易泄漏及溢出,试样开裂,蓄热密度严重下降。
[0005]
也有一些学者对铝或铝硅合金相变蓄热颗粒的制作进行了研究:“一种大直径相变蓄热颗粒及其制备方法”(201910007853.0)专利技术,该技术将铝硅合金粉与酸和去离子水反复洗涤,经干燥和不同温度焙烧处理,制得一种大直径相变蓄热颗粒。该技术制备工艺成本高,产量低,不易于工业大量生产。“致密氧化铝壳层高温相变蓄热微胶囊及其制备方法”(201810202184.8)专利技术,该技术以铝硅合金粉为原料,通过处理液预处理,焙烧,制得致密氧化铝壳层高温相变蓄热微胶囊。该技术制备的壳层主要为氧化铝,由于氧化铝的热震稳定性较差,导致制备的致密氧化铝壳层高温相变蓄热微胶囊循环使用寿命短。


技术实现要素:

[0006]
本发明旨在克服现有技术缺陷,目的是提供一种原位封装、密封性好、稳定性强、
易于控制、壳层厚薄均匀和易于工业化生产的双壳层相变蓄热球的制备方法;所制备的双壳层相变蓄热球蓄热量高、热震稳定性好、热循环性能好、产品寿命长、使用温度高、应用范围广和热量利用率高。
[0007]
为实现上述目的,本发明采用的技术方案的步骤是:
[0008]
步骤一、按50~70wt%的石蜡和30~50wt%的有机烧失物配料,在80~110℃条件下,先将所述石蜡置于烘箱中,保持1~2h,得到石蜡熔体;再加入所述有机烧失物,制得含烧失物的石蜡熔体;然后将金属球置于含烧失物的石蜡熔体浸渍10~20s,于通风橱中自然冷却,制得烧失物&石蜡包覆的金属球。
[0009]
步骤二、将15~35wt%的氧化铝质耐火浆料置于圆盘造粒机中,再将65~85wt%的所述烧失物&石蜡包覆的金属球加入所述圆盘造粒机中,以10~20r/min旋转0.5~1h,取出,置于通风橱中4~6h,再于80~110℃条件下保持20~24h,制得氧化铝复合相变蓄热球坯体。
[0010]
步骤三、将25~40wt%的莫来石质耐火浆料置于圆盘造粒机中,再将60~75wt%的所述氧化铝复合相变蓄热球坯体加入圆盘造粒机中,以10~20r/min旋转0.5~1h,取出,置于通风橱中4~6h,再置于烘箱中,于80~110℃条件下保持20~24h,制得氧化铝&莫来石双壳层相变蓄热球坯体。
[0011]
步骤四、将所述氧化铝&莫来石双壳层相变蓄热球坯体置于马弗炉中,以5~10℃/min的速率升温至500~550℃,保温2~4h,再以3~5℃/min的速率升温至850~1100℃,保温3~5h,再以2~5℃/min的速率升温至1200~1600℃,保持3~5h,自然冷却至室温,制得双壳层相变蓄热球。
[0012]
所述氧化铝质耐火浆料的制备方法:
[0013]
将80~90wt%的刚玉细粉、3~5wt%的α-氧化铝粉、4~8wt%的广西泥土、1~3wt%的硅微粉、1~2wt%的木钙和1~2wt%的糊精预混,得到预混料;然后向所述预混料中外加6~8wt%的磷酸二氢铝溶液和8~10wt%的水,搅拌均匀,制得氧化铝质耐火浆料。
[0014]
莫来石质耐火浆料的制备方法:
[0015]
将68~82wt%的莫来石细粉、6~10wt%的α-氧化铝粉、4~8wt%的广西泥土、5~9wt%的硅微粉、1~2wt%的木钙和2~3wt%的糊精预混,得到预混料;然后向所述预混料中外加6~8wt%的磷酸二氢铝溶液和8~10wt%的水,搅拌均匀,制得莫来石质耐火浆料。
[0016]
所述有机烧失物为淀粉、锯末和稻糠壳中的一种,有机烧失物的粒径≤180μm。
[0017]
所述金属球为铝球、铝硅合金球、铝硅铁合金球、铝硅镍合金球和硅镁合金球中的一种,金属球的粒径为5~30mm;
[0018]
所述铝球的al含量≥97wt%;
[0019]
所述铝硅合金球:al含量≥56wt%,si含量≤40wt%;
[0020]
所述铝硅铁合金球:al含量为45~60wt%,si含量为30~40wt%,fe含量为5~15wt%;
[0021]
所述铝硅镍合金球:al含量为30~40wt%,si含量为40~50wt%,ni含量为15~30wt%;
[0022]
所述硅镁合金球:mg含量为40~50wt%,si含量为50~60wt%。
[0023]
所述刚玉细粉的al
2
o
3
含量≥98wt%;刚玉细粉的粒径≤74μm。
[0024]
所述α-氧化铝粉的al
2
o
3
含量≥97wt%;α-氧化铝粉的粒径≤8μm。
[0025]
所述广西泥:al
2
o
3
含量为33~36wt%;sio
2
含量为46~49wt%;fe
2
o
3
含量为1~1.3wt%;广西泥的粒径≤180μm。
[0026]
所述硅微粉的sio
2
含量≥92wt%;硅微粉的粒径≤0.6μm。
[0027]
所述磷酸二氢铝溶液:p
2
o
5
含量≥33wt%;al
2
o
3
含量≥8wt%。
[0028]
所述莫来石细粉的al
2
o
3
含量≥68wt%;莫来石细粉的粒径≤0.088mm。
[0029]
本发明与现有技术相比具有如下积极效果:
[0030]
本发明以金属球为核,依次包覆有机烧失物&石蜡、氧化铝质耐火浆料和莫来石质耐火浆料。烘烤过程中,氧化铝质耐火浆料和莫来石质耐火浆料中的水分排出,外层壳层坯体中形成贯通气孔通道。焙烧过程中,石蜡最先熔化,通过氧化铝质耐火浆料和莫来石质耐火浆料中的贯通气孔逐渐排出,继续升温,有机烧失物开始氧化分解,通过氧化铝质耐火浆料和莫来石质耐火浆料中的贯通气孔逐渐排出。石蜡和有机烧失物在不同的温度阶段先后烧失和分解排出气体,避免了同时产生大量气体急剧膨胀导致外层氧化铝质耐火浆料和莫来石质耐火浆料壳层坯体开裂。石蜡和有机烧失物烧失和分解后原位形成较大的孔隙,给金属球高温服役过程熔融膨胀预留空间。继续升温,莫来石质耐火浆料在烧结过程中逐渐致密化,气孔收缩并消失。进一步升温,氧化铝质耐火浆料在烧结过程中逐渐致密化,气孔收缩并消失。原位形成双壳层包覆壳层,将金属球充分包覆,避免金属溢出,同时保护金属不被外部空气氧化。因此,所制备的双壳层相变蓄热球原位封装,工艺简单、密封性好和稳定性强,所制备的双壳层相变蓄热球的蓄热量高、能提高热量的利用率。
[0031]
本发明最终形成氧化铝&莫来石复合双壳层,包裹金属球。得到金属为核、莫来石&氧化铝为壳的复合壳层相变蓄热颗粒。焙烧过程中,氧化铝质耐火浆料和莫来石质耐火浆料逐渐致密化最终形成氧化铝&莫来石复合双壳层包裹金属球,莫来石具有热震性能好的优点,与氧化铝的高强度的优点相结合。因此,所制备的双壳层相变蓄热球热震稳定性、热循环性能好和寿命长。
[0032]
本发明通过控制金属球在圆盘造粒机中的转速和时间,控制金属球包覆层的厚度和均匀程度。因此,所制备的双壳层相变蓄热球易于控制,壳层厚薄均匀,稳定性强,易于工业化生产。
[0033]
本发明采用的耐火浆料在1200~1600℃能稳定存在,并进一步致密化,因此,所制备的双壳层相变蓄热球使用温度高,应用范围广。
[0034]
本发明所制备的双壳层相变蓄热球经检测:蓄热密度为160.5~310.8j/g;1000℃热震20~50次未出现裂纹;500~1200℃热循环3000次,蓄热密度减小了20~30%。
[0035]
因此,本发明具有原位封装、工艺简单、易于控制和易于工业化生产的特点;所制备的双壳层相变蓄热球不仅密封性好、稳定性强和壳层厚薄均匀,且蓄热量高、热震稳定性好、热循环性能好、寿命长和使用温度高,提高了热量的利用率。
具体实施方式
[0036]
下面结合具体实施方式对本发明做进一步的描述,并非对其保护的限制。
[0037]
一种双壳层相变蓄热球及其制备方法。本具体实施方式所述制备方法是:
[0038]
步骤一、按50~70wt%的石蜡和30~50wt%的有机烧失物配料,在80~110℃条件
下,先将所述石蜡置于烘箱中,保持1~2h,得到石蜡熔体;再加入所述有机烧失物,制得含烧失物的石蜡熔体;然后将金属球置于含烧失物的石蜡熔体浸渍10~20s,于通风橱中自然冷却,制得烧失物&石蜡包覆的金属球。
[0039]
步骤二、将15~35wt%的氧化铝质耐火浆料置于圆盘造粒机中,再将65~85wt%的所述烧失物&石蜡包覆的金属球加入所述圆盘造粒机中,以10~20r/min旋转0.5~1h,取出,置于通风橱中4~6h,再于80~110℃条件下保持20~24h,制得氧化铝复合相变蓄热球坯体。
[0040]
步骤三、将25~40wt%的莫来石质耐火浆料置于圆盘造粒机中,再将60~75wt%的所述氧化铝复合相变蓄热球坯体加入圆盘造粒机中,以10~20r/min旋转0.5~1h,取出,置于通风橱中4~6h,再置于烘箱中,于80~110℃条件下保持20~24h,制得氧化铝&莫来石双壳层相变蓄热球坯体。
[0041]
步骤四、将所述氧化铝&莫来石双壳层相变蓄热球坯体置于马弗炉中,以5~10℃/min的速率升温至500~550℃,保温2~4h,再以3~5℃/min的速率升温至850~1100℃,保温3~5h,再以2~5℃/min的速率升温至1200~1600℃,保持3~5h,自然冷却至室温,制得双壳层相变蓄热球。
[0042]
所述氧化铝质耐火浆料的制备方法:
[0043]
将80~90wt%的刚玉细粉、3~5wt%的α-氧化铝粉、4~8wt%的广西泥土、1~3wt%的硅微粉、1~2wt%的木钙和1~2wt%的糊精预混,得到预混料;然后向所述预混料中外加6~8wt%的磷酸二氢铝溶液和8~10wt%的水,搅拌均匀,制得氧化铝质耐火浆料。
[0044]
莫来石质耐火浆料的制备方法:
[0045]
将68~82wt%的莫来石细粉、6~10wt%的α-氧化铝粉、4~8wt%的广西泥土、5~9wt%的硅微粉、1~2wt%的木钙和2~3wt%的糊精预混,得到预混料;然后向所述预混料中外加6~8wt%的磷酸二氢铝溶液和8~10wt%的水,搅拌均匀,制得莫来石质耐火浆料。
[0046]
所述有机烧失物为淀粉、锯末和稻糠壳中的一种,有机烧失物的粒径≤180μm。
[0047]
所述金属球为铝球、铝硅合金球、铝硅铁合金球、铝硅镍合金球和硅镁合金球中的一种,金属球的粒径为5~30mm;
[0048]
所述铝球的al含量≥97wt%;
[0049]
所述铝硅合金球:al含量≥56wt%,si含量≤40wt%;
[0050]
所述铝硅铁合金球:al含量为45~60wt%,si含量为30~40wt%,fe含量为5~15wt%;
[0051]
所述铝硅镍合金球:al含量为30~40wt%,si含量为40~50wt%,ni含量为15~30wt%;
[0052]
所述硅镁合金球:mg含量为40~50wt%,si含量为50~60wt%。
[0053]
所述广西泥:al
2
o
3
含量为33~36wt%,sio
2
含量为46~49wt%,fe
2
o
3
含量为1~1.3wt%;广西泥的粒径≤180μm。
[0054]
本具体实施方式中:
[0055]
所述有机烧失物的粒径≤180μm。
[0056]
所述刚玉细粉的al
2
o
3
含量≥98wt%;刚玉细粉的粒径≤74μm。
[0057]
所述α-氧化铝粉的al
2
o
3
含量≥97wt%;α-氧化铝粉的粒径≤8μm。
[0058]
所述广西泥的粒径≤180μm。
[0059]
所述硅微粉的sio
2
含量≥92wt%;硅微粉的粒径≤0.6μm。
[0060]
所述磷酸二氢铝溶液:p
2
o
5
含量≥33wt%;al
2
o
3
含量≥8wt%。
[0061]
所述莫来石细粉的al
2
o
3
含量≥68wt%;莫来石细粉的粒径≤0.088mm。
[0062]
实施例中不再赘述。
[0063]
实施例1
[0064]
一种双壳层相变蓄热球及其制备方法。本实例所述制备方法的步骤是:步骤一、按50wt%的石蜡和50wt%的有机烧失物配料,在80℃条件下,先将所述石蜡置于烘箱中,保持1h,得到石蜡熔体;再加入所述有机烧失物,制得含烧失物的石蜡熔体;然后将金属球置于含烧失物的石蜡熔体浸渍20s,于通风橱中自然冷却,制得烧失物&石蜡包覆的金属球。
[0065]
步骤二、将15wt%的氧化铝质耐火浆料置于圆盘造粒机中,再将85wt%的所述烧失物&石蜡包覆的金属球加入所述圆盘造粒机中,以10r/min旋转1h,取出,置于通风橱中4h,再于80℃条件下保持24h,制得氧化铝复合相变蓄热球坯体。
[0066]
步骤三、将40wt%的莫来石质耐火浆料置于圆盘造粒机中,再将60wt%的所述氧化铝复合相变蓄热球坯体加入圆盘造粒机中,以20r/min旋转0.5h,取出,置于通风橱中6h,再置于烘箱中,于110℃条件下保持20h,制得氧化铝&莫来石双壳层相变蓄热球坯体。
[0067]
步骤四、将所述氧化铝&莫来石双壳层相变蓄热球坯体置于马弗炉中,以10℃/min的速率升温至550℃,保温2h,再以5℃/min的速率升温至1100℃,保温3h,再以5℃/min的速率升温至1600℃,保持3h,自然冷却至室温,制得双壳层相变蓄热球。
[0068]
所述氧化铝质耐火浆料的制备方法:
[0069]
将80wt%的刚玉细粉、5wt%的α-氧化铝粉、8wt%的广西泥土、3wt%的硅微粉、2wt%的木钙和2wt%的糊精预混,得到预混料;然后向所述预混料中外加6wt%的磷酸二氢铝溶液和10wt%的水,搅拌均匀,制得氧化铝质耐火浆料。
[0070]
莫来石质耐火浆料的制备方法:
[0071]
将82wt%的莫来石细粉、6wt%的α-氧化铝粉、4wt%的广西泥土、5wt%的硅微粉、1wt%的木钙和2wt%的糊精预混,得到预混料;然后向所述预混料中外加8wt%的磷酸二氢铝溶液和8wt%的水,搅拌均匀,制得莫来石质耐火浆料。
[0072]
所述有机烧失物为淀粉。
[0073]
所述金属球为铝球,铝球的粒径为30mm;所述铝球的al含量为97wt%。
[0074]
所述广西泥:al
2
o
3
含量为33wt%;sio
2
含量为49wt%;fe
2
o
3
含量为1.3wt%。
[0075]
实施例2
[0076]
一种双壳层相变蓄热球及其制备方法。本实例除所述铝球的al含量不同外,其余同实施例1:
[0077]
所述铝球的al含量为98wt%。
[0078]
实施例3
[0079]
一种双壳层相变蓄热球及其制备方法。本实例除所述铝球成分不同外,其余同实施例1:
[0080]
所述铝球的al含量为99wt%。
[0081]
实施例4
[0082]
一种双壳层相变蓄热球及其制备方法。本实例所述制备方法的步骤是:
[0083]
步骤一、按57wt%的石蜡和43wt%的有机烧失物配料,在90℃条件下,先将所述石蜡置于烘箱中,保持1.5h,得到石蜡熔体;再加入所述有机烧失物,制得含烧失物的石蜡熔体;然后将金属球置于含烧失物的石蜡熔体浸渍16s,于通风橱中自然冷却,制得烧失物&石蜡包覆的金属球。
[0084]
步骤二、将21wt%的氧化铝质耐火浆料置于圆盘造粒机中,再将79wt%的所述烧失物&石蜡包覆的金属球加入所述圆盘造粒机中,以13r/min旋转0.8h,取出,置于通风橱中5h,再于90℃条件下保持23h,制得氧化铝复合相变蓄热球坯体。
[0085]
步骤三、将35wt%的莫来石质耐火浆料置于圆盘造粒机中,再将65wt%的所述氧化铝复合相变蓄热球坯体加入圆盘造粒机中,以16r/min旋转0.6h,取出,置于通风橱中5h,再置于烘箱中,于100℃条件下保持21h,制得氧化铝&莫来石双壳层相变蓄热球坯体。
[0086]
步骤四、将所述氧化铝&莫来石双壳层相变蓄热球坯体置于马弗炉中,以9℃/min的速率升温至540℃,保温3h,再以4℃/min的速率升温至1000℃,保温4h,再以4℃/min的速率升温至1500℃,保持4h,自然冷却至室温,制得双壳层相变蓄热球。
[0087]
所述氧化铝质耐火浆料的制备方法:
[0088]
将83wt%的刚玉细粉、4wt%的α-氧化铝粉、8wt%的广西泥土、2wt%的硅微粉、1.5wt%的木钙和1.5wt%的糊精预混,得到预混料;然后向所述预混料中外加7wt%的磷酸二氢铝溶液和9wt%的水,搅拌均匀,制得氧化铝质耐火浆料。
[0089]
莫来石质耐火浆料的制备方法:
[0090]
将77wt%的莫来石细粉、6wt%的α-氧化铝粉、6wt%的广西泥土、7wt%的硅微粉、1.5wt%的木钙和2.5wt%的糊精预混,得到预混料;然后向所述预混料中外加7wt%的磷酸二氢铝溶液和9wt%的水,搅拌均匀,制得莫来石质耐火浆料。
[0091]
所述有机烧失物为锯末。
[0092]
所述金属球为铝硅合金球,铝硅合金球的粒径为25mm;所述铝硅合金球:al为56.1wt%,si为40wt%。
[0093]
所述广西泥:al
2
o
3
含量为34wt%;sio
2
含量为48wt%;fe
2
o
3
含量为1.2wt%。
[0094]
实施例5
[0095]
一种双壳层相变蓄热球及其制备方法。本实例除所述铝硅合金球的化学成分不同外,其余同实施例4:
[0096]
所述铝硅合金球:al含量为70.3wt%;si含量为28wt%。
[0097]
实施例6
[0098]
一种双壳层相变蓄热球及其制备方法。本实例除所述铝硅合金球的化学成分不同外,其余同实施例4:
[0099]
所述铝硅合金球:al含量为86.2wt%;si含量为12wt%。
[0100]
实施例7
[0101]
一种双壳层相变蓄热球及其制备方法。本实例除所述铝硅合金球成分不同外,其余同实施例4:
[0102]
所述铝硅合金球:al含量为95.4wt%;si含量为3wt%。
[0103]
实施例8
[0104]
一种双壳层相变蓄热球及其制备方法。本实例所述制备方法的步骤是:
[0105]
步骤一、按63wt%的石蜡和37wt%的有机烧失物配料,在100℃条件下,先将所述石蜡置于烘箱中,保持1.5h,得到石蜡熔体;再加入所述有机烧失物,制得含烧失物的石蜡熔体;然后将金属球置于含烧失物的石蜡熔体浸渍13s,于通风橱中自然冷却,制得烧失物&石蜡包覆的金属球。
[0106]
步骤二、将27wt%的氧化铝质耐火浆料置于圆盘造粒机中,再将73wt%的所述烧失物&石蜡包覆的金属球加入所述圆盘造粒机中,以16r/min旋转0.6h,取出,置于通风橱中5h,再于100℃条件下保持22h,制得氧化铝复合相变蓄热球坯体。
[0107]
步骤三、将30wt%的莫来石质耐火浆料置于圆盘造粒机中,再将70wt%的所述氧化铝复合相变蓄热球坯体加入圆盘造粒机中,以13r/min旋转0.8h,取出,置于通风橱中5h,再置于烘箱中,于90℃条件下保持22h,制得氧化铝&莫来石双壳层相变蓄热球坯体。
[0108]
步骤四、将所述氧化铝&莫来石双壳层相变蓄热球坯体置于马弗炉中,以7℃/min的速率升温至520℃,保温3h,再以4℃/min的速率升温至900℃,保温4h,再以3℃/min的速率升温至1300℃,保持4h,自然冷却至室温,制得双壳层相变蓄热球。
[0109]
所述氧化铝质耐火浆料的制备方法:
[0110]
将87wt%的刚玉细粉、3wt%的α-氧化铝粉、5wt%的广西泥土、2wt%的硅微粉、1.5wt%的木钙和1.5wt%的糊精预混,得到预混料;然后向所述预混料中外加7wt%的磷酸二氢铝溶液和9wt%的水,搅拌均匀,制得氧化铝质耐火浆料。
[0111]
莫来石质耐火浆料的制备方法:
[0112]
将74wt%的莫来石细粉、8wt%的α-氧化铝粉、6wt%的广西泥土、8wt%的硅微粉、1.5wt%的木钙和2.5wt%的糊精预混,得到预混料;然后向所述预混料中外加7wt%的磷酸二氢铝溶液和9wt%的水,搅拌均匀,制得莫来石质耐火浆料。
[0113]
所述有机烧失物为锯末。
[0114]
所述金属球为铝硅铁合金球,所述铝硅铁合金球的粒径为20mm;所述铝硅铁合金球的al含量为45wt%;si含量为40wt%,fe含量为15wt%。
[0115]
所述广西泥:al
2
o
3
含量为35wt%,sio
2
含量为47wt%,fe
2
o
3
含量为1.2wt%。
[0116]
实施例9
[0117]
一种双壳层相变蓄热球及其制备方法。本实例除所述铝硅铁合金球的化学成分不同外,其余同实施例8:
[0118]
所述铝硅铁合金球:al含量为50wt%;si含量为35wt%;fe含量为15wt%。
[0119]
实施例10
[0120]
一种双壳层相变蓄热球及其制备方法。本实例除所述铝硅铁合金球的化学成分不同外,其余同实施例8:
[0121]
所述铝硅铁球的al含量为60wt%;si含量为30wt%;fe含量为10wt%。
[0122]
实施例11
[0123]
一种双壳层相变蓄热球及其制备方法。本实例所述制备方法的步骤是:
[0124]
步骤一、按70wt%的石蜡和30wt%的有机烧失物配料,在110℃条件下,先将所述石蜡置于烘箱中,保持2h,得到石蜡熔体;再加入所述有机烧失物,制得含烧失物的石蜡熔体;然后将金属球置于含烧失物的石蜡熔体浸渍10s,于通风橱中自然冷却,制得烧失物&石
蜡包覆的金属球。
[0125]
步骤二、将35wt%的氧化铝质耐火浆料置于圆盘造粒机中,再将65wt%的所述烧失物&石蜡包覆的金属球加入所述圆盘造粒机中,以20r/min旋转0.5h,取出,置于通风橱中6h,再于110℃条件下保持20h,制得氧化铝复合相变蓄热球坯体。
[0126]
步骤三、将25wt%的莫来石质耐火浆料置于圆盘造粒机中,再将75wt%的所述氧化铝复合相变蓄热球坯体加入圆盘造粒机中,以10r/min旋转0.5h,取出,置于通风橱中4h,再置于烘箱中,于80℃条件下保持24h,制得氧化铝&莫来石双壳层相变蓄热球坯体。
[0127]
步骤四、将所述氧化铝&莫来石双壳层相变蓄热球坯体置于马弗炉中,以5℃/min的速率升温至500℃,保温4h,再以3℃/min的速率升温至850℃,保温5h,再以2℃/min的速率升温至1200,保持5h,自然冷却至室温,制得双壳层相变蓄热球。
[0128]
所述氧化铝质耐火浆料的制备方法:
[0129]
将90wt%的刚玉细粉、3wt%的α-氧化铝粉、4wt%的广西泥土、1wt%的硅微粉、1wt%的木钙和1wt%的糊精预混,得到预混料;然后向所述预混料中外加8wt%的磷酸二氢铝溶液和8wt%的水,搅拌均匀,制得氧化铝质耐火浆料。
[0130]
莫来石质耐火浆料的制备方法:
[0131]
将68wt%的莫来石细粉、10wt%的α-氧化铝粉、8wt%的广西泥土、9wt%的硅微粉、2wt%的木钙和3wt%的糊精预混,得到预混料;然后向所述预混料中外加6wt%的磷酸二氢铝溶液和10wt%的水,搅拌均匀,制得莫来石质耐火浆料。
[0132]
所述有机烧失物为稻糠壳。
[0133]
所述金属球为铝硅镍合金球所述铝硅镍合金球的粒径为10mm;所述铝硅镍球的al为30wt%,si为50wt%,ni为20wt%。
[0134]
所述广西泥:al
2
o
3
含量为36wt%;sio
2
含量为46wt%;fe
2
o
3
含量为1wt%。
[0135]
实施例12
[0136]
一种双壳层相变蓄热球及其制备方法。本实例除所述铝硅镍合金球的化学成分不同外,其余同实施例11:
[0137]
所述铝硅镍合金球:al含量为35wt%;si含量为40wt%;ni含量为25wt%。
[0138]
实施例13
[0139]
一种双壳层相变蓄热球及其制备方法。本实例除所述铝硅镍合金球的化学成分不同外,其余同实施例11:
[0140]
所述铝硅镍合金球:al含量为40wt%;si含量为30wt%;ni含量为30wt%。
[0141]
实施例14
[0142]
一种双壳层相变蓄热球及其制备方法。本实例所述制备方法的步骤是:
[0143]
步骤一、按56wt%的石蜡和44wt%的有机烧失物配料,在100℃条件下,先将所述石蜡置于烘箱中,保持1.5h,得到石蜡熔体;再加入所述有机烧失物,制得含烧失物的石蜡熔体;然后将金属球置于含烧失物的石蜡熔体浸渍15s,于通风橱中自然冷却,制得烧失物&石蜡包覆的金属球。
[0144]
步骤二、将20wt%的氧化铝质耐火浆料置于圆盘造粒机中,再将80wt%的所述烧失物&石蜡包覆的金属球加入所述圆盘造粒机中,以15r/min旋转0.5h,取出,置于通风橱中5h,再于90℃条件下保持22h,制得氧化铝复合相变蓄热球坯体。
[0145]
步骤三、将30wt%的莫来石质耐火浆料置于圆盘造粒机中,再将70wt%的所述氧化铝复合相变蓄热球坯体加入圆盘造粒机中,以15r/min旋转0.5h,取出,置于通风橱中5h,再置于烘箱中,于90℃条件下保持21h,制得氧化铝&莫来石双壳层相变蓄热球坯体。
[0146]
步骤四、将所述氧化铝&莫来石双壳层相变蓄热球坯体置于马弗炉中,以8℃/min的速率升温至520℃,保温3h,再以4℃/min的速率升温至950℃,保温4h,再以4℃/min的速率升温至1400℃,保持4h,自然冷却至室温,制得双壳层相变蓄热球。
[0147]
所述氧化铝质耐火浆料的制备方法:
[0148]
将85wt%的刚玉细粉、5wt%的α-氧化铝粉、4wt%的广西泥土、3wt%的硅微粉、1wt%的木钙和2wt%的糊精预混,得到预混料;然后向所述预混料中外加7wt%的磷酸二氢铝溶液和8wt%的水,搅拌均匀,制得氧化铝质耐火浆料。
[0149]
莫来石质耐火浆料的制备方法:
[0150]
将70wt%的莫来石细粉、9wt%的α-氧化铝粉、7wt%的广西泥土、9wt%的硅微粉、2wt%的木钙和3wt%的糊精预混,得到预混料;然后向所述预混料中外加8wt%的磷酸二氢铝溶液和9wt%的水,搅拌均匀,制得莫来石质耐火浆料。
[0151]
所述有机烧失物为稻糠壳。
[0152]
所述金属球为硅镁合金球,所述硅镁合金球的粒径为5mm;所述硅镁合金球:mg为40wt%,si为60wt%。
[0153]
所述广西泥:al
2
o
3
含量为34wt%;sio
2
含量为47wt%;fe
2
o
3
含量为1.2wt%。
[0154]
实施例15
[0155]
一种双壳层相变蓄热球及其制备方法。本实例除所述硅镁合金球的化学成分不同外,其余同实施例14:
[0156]
所述硅镁合金球:mg含量为50wt%;si含量为50wt%。
[0157]
实施例16
[0158]
一种双壳层相变蓄热球及其制备方法。本实例除所述硅镁合金球成分不同外,其余同实施例14:
[0159]
所述硅镁合金球:mg含量为60wt%;si含量为40wt%。
[0160]
本具体实施方式与现有技术相比具有如下积极效果:
[0161]
本具体实施方式以金属球为核,依次包覆有机烧失物&石蜡、氧化铝质耐火浆料和莫来石质耐火浆料。烘烤过程中,氧化铝质耐火浆料和莫来石质耐火浆料中的水分排出,外层壳层坯体中形成贯通气孔通道。焙烧过程中,石蜡最先熔化,通过氧化铝质耐火浆料和莫来石质耐火浆料中的贯通气孔逐渐排出,继续升温,有机烧失物开始氧化分解,通过氧化铝质耐火浆料和莫来石质耐火浆料中的贯通气孔逐渐排出。石蜡和有机烧失物在不同的温度阶段先后烧失和分解排出气体,避免了同时产生大量气体急剧膨胀导致外层氧化铝质耐火浆料和莫来石质耐火浆料壳层坯体开裂。石蜡和有机烧失物烧失和分解后原位形成较大的孔隙,给金属球高温服役过程熔融膨胀预留空间。继续升温,莫来石质耐火浆料在烧结过程中逐渐致密化,气孔收缩并消失。进一步升温,氧化铝质耐火浆料在烧结过程中逐渐致密化,气孔收缩并消失。原位形成双壳层包覆壳层,将金属球充分包覆,避免金属溢出,同时保护金属不被外部空气氧化。因此,所制备的双壳层相变蓄热球原位封装,工艺简单,密封性好和稳定性强,所制备的双壳层相变蓄热球的蓄热量高、能提高热量的利用率。
[0162]
本具体实施方式最终形成氧化铝&莫来石复合双壳层,包裹金属球。得到金属为核、莫来石&氧化铝为壳的复合壳层相变蓄热颗粒。焙烧过程中,氧化铝质耐火浆料和莫来石质耐火浆料逐渐致密化最终形成氧化铝&莫来石复合双壳层包裹金属球,莫来石具有热震性能好的优点,与氧化铝的高强度的优点相结合。因此,所制备的双壳层相变蓄热球热震稳定性、热循环性能好和寿命长。
[0163]
本具体实施方式通过控制金属球在圆盘造粒机中的转速和时间,控制金属球包覆层的厚度和均匀程度。因此,所制备的双壳层相变蓄热球易于控制,壳层厚薄均匀,稳定性强,易于工业化生产。
[0164]
本具体实施方式采用的耐火浆料在1200~1600℃能稳定存在,并进一步致密化,因此,所制备的双壳层相变蓄热球使用温度高,应用范围广。
[0165]
本具体实施方式所制备的双壳层相变蓄热球经检测:蓄热密度为160.5~310.8j/g,1000℃热震20~50次未出现裂纹,500~1200℃热循环3000次,蓄热密度减小了20~30%。
[0166]
因此,本具体实施方式具有原位封装、工艺简单、易于控制和易于工业化生产的特点;所制备的双壳层相变蓄热球不仅密封性好、稳定性强和壳层厚薄均匀,且蓄热量高、热震稳定性好、热循环性能好、寿命长和使用温度高,提高了热量的利用率。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips